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Larson identifies the globular star clusters as the original products of the star formation process. In The 
Neglected  Facts  of  Science,1 he  gives  an  account  of  this  process:  “…consider  successively larger 
spherical aggregates of dispersed matter: … the particles of this matter … are moving outward away 
from each other by reason of the progression of the natural reference system. Coincidentally they are 
moving inward toward each other gravitationally, and also inward toward the center of the aggregate 
under the gravitational influence of the aggregate as a whole. In the central regions of this aggregate, 
the net motion is outward, but the gravitational effect on the outer particles increases with the radius of  
the sphere, and at some very large distance, the inward and outward motions reach equality. Beyond 
this distance, the net motion is inward…

“While the end result of this process is an equilibrium, not a condensation, the action does not stop at 
this point. … there is a continuous inflow of matter from the cosmic sector of the universe. This matter 
is  dispersed throughout  all  of  the space of the material  sector,  and the mass  contained within the 
equilibrium system is therefore slowly increased. This strengthens the gravitational forces and initiates 
a contraction of the aggregate. … Meanwhile … the original aggregate separates into a large group of 
sub-aggregates. Eventually, the sub-aggregates become stars, and the aggregate as a whole becomes a 
globular cluster.”

We will now attempt to theoretically arrive at the protostar mass distribution in the inchoate globular 
cluster by applying the principles of the Reciprocal System.

1 Force of the Space-Time Progression
In the context of the familiar three-dimensional stationary spatial reference system the outward motion 
of the space-time progression (STP) originates at every point of space and is independent of distance. It 
depends only on the number of mass units (that is, the number of space-time locations occupied by the 
individual mass units) of a material aggregate. Let Y be the force of STP on a unit mass, in dynes/gram. 
Consider a large mass M, in the vicinity of the unit mass but not overlapping the latter. We may write 
the net force exerted by the STP and the gravitation of the mass M on the unit mass as

a=Y −(G M

x2 ) dyne/g or cm/s2  (1)

where

x = the distance between the unit mass and the mass M, and
G = the gravitational constant.

Since at the inner gravitational limit Ril of the mass M, a = 0, we have

1 Larson, Dewey B., The Neglected Facts of Science, North Pacific Pub., Portland, OR, 1982,  p. 115.
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Y =
G M

Ril
2

 (2)

From Larson2 we have, in natural units,

M

Ril
2
=9(156.444)

4  

Therefore, in conventional units,

Y =
(6.673×10−8

)(9×156.444
)(1.65979×10−24

)

(4.558816×10−6
)

2

=2.87311647×10−11 dyne/g

 (3)

2 Potential Energy
The formation of the globular cluster of stars from a cloud of dust and gas is principally determined by 
the potential energy (virial) of the cloud of dispersed matter. We will assume a spherical mass of radius  
R and of density ρ. The postulates of the Reciprocal System do not lead us to assume anything other 
than that this initial density is uniform. They also suggest that the role of factors other than gravitation 
and  STP,  like  rotation,  for  example,  in  determining  the  initial  course  of  evolution  of  these  large 
dispersed aggregates is insignificant. As such, the net (outward plus inward) force per unit mass at a 
radius of x in the sphere is

a=Y −(G M

R3 ) x=Y −(4
3

πGρ x)  (4)

The potential energy dP of a spherical shell of matter of radius x and thickness dx is then given by

dP=(ρ⋅4π x2⋅dx)(Y −
4
3

πGρ x) x  (5)

Integrating between the limits x = 0 and x = R, the total potential energy of the spherical mass is given 
by

P=πY ρR4
−

16
15

π
2Gρ

2 R5  (6)

The spherical aggregate either expands, remains in equilibrium, or contracts, depending on whether P 
is positive, zero or negative respectively. Solving for the radius for which P becomes zero, therefore, 
gives us the critical radius Rcr of the mass M, for it to be in equilibrium. Thus, from Equation (6),

ρ⋅Rcr=
15
16

Y
πG

 (7)

2 Larson, The Structure of the Physical Universe, (North Pacific Pub., Portland, OR, 1959), p 166.
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Since R = (3M / 4π ρ)1/3 we have the following useful relations:

M cr=
8.8848×10−12

ρcr
2 grams  (8)

and

Rcr=2.0326√ M cr

M ☉

light-years  (9)

where M☉ is the solar mass and ρ is in g/cm3.

For instance, at a density of 10-25 g/cm3, the critical radius of the cloud for equilibrium turns out to be 
nearly 416 parsecs. The total mass of the cloud is 4.5×105 M☉.

Further, in such an uniformly dispersed spherical mass there is a net outward motion up to a radius of 
Ri and a net inward motion beyond it. From Equations (4) and (7) we find

Ri=
4
5

Rcr  (10)

3 Fragmentation
Fragmentation  to  form protostars  can  get  initiated  only  within  the  portion  of  the  prestellar  cloud 
between the radii and Ri and Rcr since the net motion in this zone is inward. In order to arrive at the 
mass spectrum of the protostars that form in this portion, it is convenient to resort to the concept of 
potential, or the potential energy per unit mass, σ. From Equation (6) we obtain the net potential (STP 
and gravitation) of a spherical mass m as

σ x=B⋅m1/3
−A⋅m2 /3 cm2

/s2  (11)

where A and B are constants dependent on ρ, the density. Further, from Equation (5) we note that the 
potential at any distance x from the center of the spherical mass is

σ x=(Y −
4
3

πGρ x)x cm2
/ s2  (12)

σx represents the net motion at the location  x. This is reckoned from the Reference Point3 posited as 
situated at the center of the spherical cloud. Remembering that the motion is intrinsically scalar in 
nature, we recognize that it  is independent of the Reference Point.  As such, it  can equivalently be 
reckoned from the Reference Point taken as situated at location  x (or, in fact,  from a multitude of 
Reference Points located over the spherical surface of radius x). Thus, it can manifest as the potential of 
an individual mass m, or of a spectrum of masses, at location   x. Consequently, at a given radius x in the 
prestellar cloud, fragmentation occurs, resulting in protostars with an upper limit for mass given by 
(from Equations (11) and (12))

σ x=B⋅mmax
1/3

−A⋅mmax
2/3  (13)

3 Larson, The Neglected Facts of Science, op. cit., p. 7.
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It  is  worthwhile  to  note  that  no  separate  theory  is  necessary  to  explain  the  phenomenon  of 
fragmentation. In the Reciprocal System, it follows directly from one of the principal characteristics of 
scalar motion which is the fundamental component of the physical universe, namely, its independence 
of the Reference Point,  together with the fact that the probability of the multiple Reference Points 
dispersed throughout the volume is greater than that of a single Reference Point situated at the center of 
the gravitating spherical aggregate.

4 Mass Spectrum of the Protostars
At a radius x in the original cloud, the specific potential energy, σ, can assume a value such that

0≤σ≤σ x  (14)

with the consequent fragment masses ranging from m1, the smallest to m2, the largest. In order to find 
the  relative  distribution  of  the  stellar  masses  we have  to  know the  probability  of  formation  of  a 
fragment with mass  m, or equivalently, the probability of occupancy of the corresponding potential 
level, σ.

So as to evaluate this probability, we draw on an analogy with the Maxwell-Boltzmann distribution 
applied to the case of indistinguishable particles occupying continuously variable energy level ε and in 
thermal equilibrium with an environment at temperature T. The probability of relative occupancy of an 
energy level range between ε and ε+dε is given by

p (ε)=J⋅e
(−ε

k T )
⋅d (

ε
k T )  

where k is the Boltzmann’s constant and J a normalization constant.

In the present case, individual mass units take the place of particles;  √σ/σ x  takes the place of  ε/kT 
since √σ is the measure of the scalar motion (in speed units) and √σx represents the motion level of the 
environment. Hence, the probability of occupancy of the motion level represented by σ is given by

p (σ)= J 1⋅e
−√σ /σ x⋅d (√σ /σ x)

= J 2
e

−√σ/σ x

√σ/σ x

d σ
 (15)

where J2 is the normalization constant to be evaluated later.

Let N(>m), or simply N, represent the total number of fragments (protostars) with masses greater than 
m, in the entire cloud (with Ri ≤ x ≤ R2, R2 being the outer radius which may be equal to Rcr, or less than 
Rcr if there has been some amount of cloud contraction). Let  σxN be the number of fragments with 
masses greater than m at a given radius x and δσδxN, or simply δδN, the number of fragments at x and at 
the particular mass m.

Now the ratios of the mass units in the m-sized fragments at location x to the total number of mass units 
available at the same location, that is, the relative occupancy of the energy level pertaining to the mass  
m is

m⋅δδ N

ρ⋅4π x2
⋅dx

 (16)
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Equating this to Equation (15) we obtain

δδ N= J
x2

m√σσ x

e
−√σ/σ x d σ dx  (17)

where J = 4π ρ J2.

5 The Smallest and the Largest Stellar Masses
What decides whether a collapsing fragment will eventually become a star or not is the question of the 
initiation of thermal destruction. If the starting potential energy is not sufficient to raise the central 
temperature  to  the  thermal  destructive  limit  of  the  heaviest  element  present,  the  fragment  fails  to 
become a star. Probably the minimum mass required for this is on the order of 0.001 M☉; but its actual 
calculation depends on the knowledge of the destructive temperatures of the elements.

Even though the mass of the smallest fragment that can form in the cloud with density ρ is given by 
Equation (8)

mmin=
8.8848×10−12

ρ
2  (8a)

the smallest mass m1, that can actually survive is somewhat greater for the following reason. At the 
very early stage when fragmentation is just setting in, because of the propinquity, mutual gravitational 
capture  takes  place  as  a  rule  rather  than  an  exception.  Consider  a  small  fragment  (with  mass  m) 
surrounded by larger ones. If it falls within their gravitational limit it gets cannibalized by the latter. 
However, the fragment-m itself cannibalizes all of the fragments smaller than itself that come within 
the ambit of its own gravitational limit. Now the greatest mass loss a fragment can incur, by being 
cannibalized by its bigger brothers, cannot be greater than its own mass, m. Under these circumstances, 
a fragment can just survive when its mass loss (that is, m) equals the mass gain from its own capture of 
its circumambient smaller brothers. Consequently, there is a lower limit for the mass m, for survival to 
be possible. Let m1 be this lower limit: we evaluate it as follows.

The gravitational limit of the mass m1, is given by K√m1, where K = 2.27 × 9.46053×1017. Hence, the 
volume of the space surrounding the mass in which its gravitational capture is effective is

4
3

π K3 m1
3/2  

Since the density of the cloud ρ is uniform, the total mass contained in this volume is

4
3

π K 3
ρ

M ☉

m1
3 /2 (in solar units).  

But  this  includes  the  mass  m1 of  the  fragment  as  well.  As  such,  the  net  mass  contained  in  the 
gravitational volume of the fragment other than its own mass is

mnet=(4π K 3
ρm3 /2

3M ☉
)−m1  (18)

Of this,  a  certain  fraction manifests  as  fragments  with masses  less  than  m1,  and  the remaining as 
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fragments with masses greater than or equal to m1. Since only those fragments with masses less than m1 

are captured by fragment-m1, we will compute their total mass now. From Equation (17), we can write 
that at any radius x in the cloud, the ratio of the mass contained in the range σmin ≤ σ ≤ σ1 (where σmin is 
determined by mmin of Equation (8a), and σ1 by m1 through Equation (11)) to the mass contained in the 
range σmin ≤ σ ≤ σx as

Q=
∫
σmin

σ1

e−√σ/σ x d √σ /σ x

∫
σmin

σ x

e
−√σ/σ x d √σ /σ x

=
[1−e√σmin/ σx−√σ1 / σx ]

[1−e√σ min/σx−1 ]

 (19)

Multiplying this ratio by the net mass (Equation (18)) contained in the gravitational volume gives us 
the mass available, in the form of smaller fragments, for capture by m1. Therefore, under the condition 
of marginal survival,

m1=[ 4π K3
ρ

3M ☉

m1
3/2

−m1]⋅Q  

Or,

m1=[(1+
1
Q )⋅3M ☉

4π K3
ρ ]

2

 
(20)

with Q substituted from Equation (19).

As an example, for an aggregate mass of 106 M☉, the values of the effective smallest mass m1 calculated 
for the cloud densities 10-21, 10-20 and 10-19 g/cm3 turn out to be respectively 3.16, 0.18 and 0.01 M☉.

Even though the theoretical maximum mass limit is given by Equation (13), there is a statistical limit, 
m2, that is much smaller than mmax. In view of the fact that the number of stars in any mass range can 
never be fractional or less than unity, m2 is effectively given by

N (>m2)=1  (21)

However, this value of m2 may not also be of much significance, for, in all probability, this mass further 
sub-divides into smaller fragments soon afterwards.

6 The Initial Mass Function
Finally, from Equation (17), by integrating, we obtain the total number of stars with individual masses 
greater than m as

N (>m)=J∫
R1

R2

∫
σ0

σx

x2
⋅e−√σ/σ x

m⋅√σ/σ x

d σdx  (22)
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where σ0 is set equal to σ or σ1, depending on whichever is less. The lower limit R1 is determined by m, 
through Equations (11) and (12).

Further, the mass M(>m) of the stellar aggregate with individual masses greater than m is given by

M (>m)= J∫
R1

R2

∫
σ 0

σ x

x2
⋅e−√σ/σx

√σ⋅σ x
d σdx  (23)

It can be seen that the constant J can now be evaluated from the equation

M (>m1)=M t  (24)

where Mt = the total mass of the aggregate of stars = 
4
3

πρ(R2
3
−Ri

3
) .

The values of  N(>m) vs.  m, obtained from Equation  (22), are shown plotted in  Figure 1 on log-log 
basis, for three different cloud densities. The plots indicate a unique lower mass limit  m1, for each. 
Further, it is apparent that the relation between N and m is of the type

N (>m)=constant⋅m1−β

dN
dM

αm−β }, m≥m1  (25)

The second of the above is referred to as the initial mass function. By linear regression, the value of β 
is found to be 2.34. Its value derived from astronomically observed data on star clusters is reported to  
be 2.35. However, it is necessary to remember that the latter derivation is based on certain assumptions 
chief of which are that stars generate their energy by the so-called hydrogen fusion process, that they 
evolve off the main sequence when 10 percent of their hydrogen gets converted to helium and that the 
rate of star formation has been unchanged for the past 109 years.
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Figure 1: Total Numbers of Stars of masses greater than m, as a Function of m
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